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1. INTRODUCTION

Sandwich structures "nd an increasing application in aerospace, shipbuilding, construction
and other industries. The study of dynamic behaviour of such structures requires a
knowledge of their damping characteristics. The damping factor plays an important role in
controlling the resonant response of the structures and thus in prolonging their service life
under periodic loading or impact. It is common practice to use viscoelastic material for
the core in sandwich layer arrangements to enhance the damping characteristics of the
structures.

A considerable amount of research work has been done on the vibration and damping of
beams with constrained layer/sandwich layer arrangements and it has been reviewed by
Nakra [1] on the topic dealing with vibration control with viscoelastic material. Some
works have also been devoted towards the optimum design of viscoelastic damping layer
treatment for beams and plates. The notable contributions are the work of Hajela and Lin
[2], and Marcelin et al. [3]. All these studies are concerned with the #exural vibration and
damping study of the beams with viscoelastic core using analytical/numerical methods.

There are many practical situations in which such structures are subjected to the
torsional vibrations. Some studies on the torsional vibrations of isotropic beams with
non-circular cross-sections have been carried out by Dimarogonas and Massouros [4], and
Christides and Barr [5]. In the case of composite laminates, the static analysis under the
torsional loads has received considerable attention in the literature, for instance, the work of
Tsai [6], Whitney [7] and Sankar [8]. However, the investigation concerning the torsional
vibration and damping of sandwich structures has been sparsely dealt with in the literature
[9]. Further, unlike the #exural study of composite laminates, the non-linear dynamic
analysis concerning torsional characteristics of sandwich structures has not received
enough attention from researchers. Such studies are necessary for the development of
structural design strategies. An attempt is made here, by extending the work given in
reference [9], to analyze the non-linear torsional-free vibration and damping behavior of
sandwich beam having a viscoelastic core.

In this paper, complex eigenvalue problem based on complex moduli is formulated using
a new beam element developed recently by Ganapathi et al. [10, 11]. The formulation of the
element includes warping of the cross-section. The non-linearity based on the Green's strain
vector de"nition is incorporated into the model. The non-linear governing equations
obtained here are solved using a direct iteration technique. Numerical results, to highlight
the e!ect of amplitude of torsional vibration, shear modulus of the core layer, and thickness
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Figure 1. (a) Sandwich beam co-ordinate system. (b) Description of sandwich beam "nite element.
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ratios of face-to-core of the sandwich structures on the torsional frequencies and the
associated system loss factors, are presented for the cantilever beams.

2. FORMULATION

A laminated composite beam of length ¸, width b and total thickness h, is considered with
the co-ordinates x along the length, y along the width and z along the thickness directions as
shown in Figure 1(a). Based on the geometrical interpretation [12], the displacements in the
kth layer uk, vk and wk at point (x, y, z) from the median surface are expressed in terms of
warping function /k, torsional rotation h and independent parameter c for torsional
rotation gradient in the length direction as

uk (x, y, z, t)"/k(y, z)c(x, t), lk(x, y, z, t)"y(cos h!1)!z sin h,

wk (x, y, z, t)"z (cos h!1)#y sin h, (1)

where t is the time and h is a function of x and t.
The torsional warping function /k used in de"ning the kinematics is the solution derived

from three-dimensional elasticity equations for composite beam of rectangular cross-
section made of di!erent layers. The general expression for /k is in the form of a harmonic
function, as outlined in references [9}11, 13], and is expressed as

/k"
=
+

N/1,3,2
(Ck

N
sinh (az)#Dk

N
cosh (az)) sin (ay)#yz, (2)

where a is de"ned as Np/b.
The coe$cients Ck

N
and Dk

N
, in equation (2), while de"ning the warping function for the

rectangular cross-section, are determined by solving the boundary value problem for
torsion such that the displacements are continuous at the interface of adjacent layers, and
the transverse shear stress is continuous at the interface of the adjacent layers and vanishes
at the top and bottom surfaces of the beam, as outlined in references [9}11, 13]. Substituting
the warping function /k determined this way into equation (1) satis"es the inter-layer
displacement continuity and torsional transverse shear stress continuity away from the
boundaries where c approaches h

,x
, i.e., the Saint}Venant hypothesis. For a beam, the
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relevant Green's strain vector MeN for the kth layer can be written as
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Equation (3), after substituting the kinematics given in equation (1), can be conveniently
represented as

MeNk"MeLNk#MeNLNk (4)

where

MeLNk"G
/kc

,x
/k

,z
c#yh

,x
/k
,y
c!zh

,x
H, MeNLNk"G

(1
2
)[/kÈc2
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#(z2#y2)h2

,x
]

/k/k
,z
cc

,x
/k/k

,y
cc

,x
H . (5)

The superscripts ¸ and N¸ denote the linear and non-linear components of strains
respectively.
The Piola}Kirchho! stress vector associated with the Green strains MeN is written as

MpNk"Mp
xx

p
xz

p
xy

NkT. (6)

Here the superscript T represents the transpose of the vector. The stress}strain relation for
the kth layer is written as

MpNk"C
Qk

11
0 Qk

16
0 Qk

44
0

Qk
16

0 Qk
66
D MeNk, (7)

where Qk
ij

(i, j"1, 4, 6) are the transformed sti!ness coe$cients of the kth layer and are
complex quantities.

For a composite laminated beam of thickness h
k

(k"1, 2, 3,2), and the ply-angle /
k

(k"1, 2, 3,2), the necessary expressions for computing the sti!ness coe$cients, available
in the literature [14], are used. Since the formulation deals with the damping model, energy
dissipation under harmonic vibration due to the viscoelastic core is taken into account with
complex moduli of an orthotropic material of the form as shown below

E*
L
"ER

L
#iEI

L
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T
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T
#iEI

T
, G*

LT
"GR

LT
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TT
"GR

TT
#iGI

TT
. (8)

Here, E* and G* are Young's modulus and shear modulus, respectively. The subscripts
¸ and ¹ are the longitudinal and transverse directions, respectively, with respect to the
"bres, and the superscripts R and I denote the real and imaginary parts of the complex
moduli.

The material loss factors g
L
, g

T
under tension compression, and g

LT
, g

TT
under shear are

de"ned as

g
L
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L
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The strain energy functional ; of the system is given as

;(d)"A
1

2BP
L

0
P

b@2

~b@2

+
k
P

hk`1

hk

MpkNTMekNdxdydz. (10)

The kinetic energy of the beam is written as

¹ (d)"
1

2 P
L

0
P

b@2

~b@2

+
k
P

hk`1

hk

ok[(uR k)2#(vR k)2#(wR k)2] dxdydz, (11)

where the dot over the variable denotes the partial derivative with respect to time and ok is
the mass density of the kth layer.

Substituting the kinematics given in equation (1), equation (11) can be rewritten as

¹ (d)"A
1

2B P
L

0
P

b@2

~b@2

+
k
P

hk`1

hk

ok[/kÈc5 2#(z2#y2)hQ 2] dxdydz. (12)

Substituting equations (10) and (12) into Lagrange's equation of motion, one obtains the
governing equation for the vibration of the beam structure as

[M]MdG N#[[K]
L
#[K(d)]

NL
]MdN"M0N, (13)

where [M] is the consistent mass matrix, and [K]
L
, [K]

NL
the structural linear and

non-linear sti!ness matrices of the beam which are of the complex forms. MdN and Md̂N are the
vector of the degrees of freedom (d.o.f.) associated with the displacement "eld in a "nite
element discretization and its second derivative with respect to time, respectively.

The coe$cients of mass and sti!ness matrices involved in governing equation (13) can
be rewritten as the product of the term having thickness and width co-ordinates (y and z)
alone and the term containing x. In the present study, while performing the integration for
the evaluation of the sti!ness and mass coe$cients, terms having y and z are explicitly
integrated whereas the terms containing x are evaluated using the three-point Gauss
integration rule.

Substituting characteristics of the time function at the point of reversal of the motion

MdG Nmax"!j*MdNmax (14)

into equation (13), will lead to the following non-linear algebraic equation of the form

[[K]
L
#[K(d)]

NL
]MdN!j*[M]MdN"[0]. (15)

The complex eigenvalues of the form j*"(jR#ijI)"(u*)2 where u*È"uRÈ(1#ig) are
obtained for the above equation by using a direct iteration technique*suitably modi"ed for
the eigenvalue problems based on QR algorithm. The resonance frequencies u and the
system loss factors g are calculated from the eigenvalues [15], corresponding to di!erent
amplitudes of vibration level as

u"uR"(jR)1@2, g"jI/jR. (16)

Here, a three-noded beam "nite element as described in Figure 1(b) is employed, based on
quadratic functions for rotation h and linear functions for c. Further, the element needs two
nodal d.o.fs. h and c at both the ends of the three-noded beam element whereas the
center node has only one-d.o.f. h. These functions allow one to have the same order of



TABLE 1(a)

Convergence of torsional frequencies (Hz) of cantilever sandwich beam with number of elements
(G-core"25]106 N/m2, b"0)015 m, h

1
/h

2
"7, terms in warping function N"11)

No. of Elements Mode, n

1 2 3

2 1192)706 3762)096 14449)38
4 1192)327 3616)613 6262)816
8 1192)295 3607)77 6124)04

16 1192)291 3606)734 6110)42
32 1192)29 3606)733 6111)42

TABLE 1(b)

Convergence of torsional frequencies (Hz) of cantilever sandwich beam with number of terms in
warping function (G-core"25]106 N/m2, b"0)015 m, number of element"16)

h
1
/h

2
N, warp.
function

5 7 9 11 13 15 17

Mode n"1 1193)838 1192)725 1192)407 1192)291 * * *

7 2 3611)266 3608)004 3607)074 3606)734 * * *

3 6117)624 6112)423 6110)953 6110)42 * * *

1 279)4161 275)2726 273)8686 273)2945 273)0273 272)8906 272)7442
1/7 2 941)7924 930)8543 927)1591 925)6505 924)9494 924)591 924)2087

3 1866)571 1851)563 1846)513 1844)457 1843)504 1843)018 1842)502
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interpolation for both h
,x

and c in the de"nition of torsional strain, which recovers the
Saint}Venant torsion (c"h

,x
). The element behaves very well for both short and long

situations pertaining to torsion. It has no spurious mode and is represented by correct
rigid-body modes.

3. RESULTS AND DISCUSSION

Using the above formulation, the torsional vibration and damping characteristics are
investigated for the sandwich beams. Here, a three-ply symmetric sandwich beam having h

1
as thickness of face (bottom/top) layer and h

2
for core (middle), with rectangular cross-

section, is considered for the analysis. The middle ply/core ply consists of soft viscoelastic
materials. The material properties and the geometrical parameters as given in reference [15]
are considered here.

Material properties: for top/bottom layer: E
b
"45)54 GPa, G

b
"17)12 GPa, l

b
"0)33,

o
b
"2040 kg/m3, g

L
"g

T
"g

LT
"g

TT
"0)0. For core/middle layer, E

c
is varied as 7)25,

72)5, 725 and 7250 MPa, l
c
"0)45, o

c
"1200 kg/m3, g

L
"g

T
"g

LT
"g

TT
"0)5.

Geometrical parameters: length (¸)"0)270 m, width (b) is varied as 0)0075, 0)015 and
0)030 m, total thickness of the beam (h)"0)009 m. The ratio of thickness of face-to-core
layer (h

1
/h

2
) is varied as 1

7
, 1, and 7.

Next, for the torsional vibrations study, convergence tests, for obtaining the natural
frequencies u

n
and the associated loss factors g, are conducted for cantilever beams by



TABLE 2

Comparision of torsional frequencies (Hz) for cantilever sandwich beam
(G-core"2)5]106 N/m2, b"0)015 m)

h
1
/h

2
Mode, n

1 2

Present 3D FEM Present 3D FEM

1/7 188)34 183)63 712)60 697)35
1 748)00 743)53 2302)30 2256)86
7 1147)61 1131)04 3476)20 3410)88
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increasing the number of elements while keeping the number of terms in de"ning the
warping function as N"11. The results are described in Table 1(a). Convergence tests are
also performed for retaining the number of terms required, in de"ning the warping function
for the cantilever case, and results are given in Table 1(b). It is revealed from Table 1 that 16
elements idealization with N"11 in the warping function series is good enough for
evaluating the frequencies and the associated loss factors. However, it is seen from Table
1(b) that for the sandwich case wherein h

2
/h

1
is normally high, slightly more number of

terms in the warping function are necessary for predicting the converged values. This again
depends very much on the variation in the material as well as the geometrical properties
concerning face and core of the sandwich beam. Furthermore, an idea of the accuracy
involved in the present formulation may be obtained by comparing the values of the "rst
and third natural frequencies of torsional vibration calculated for an isotropic cantilever
beam (¸"0)432 m, h"0)0508 m, b"0)0127 m) 1660 and 5110 Hz, respectively, with the
available experimental results [5], namely 1650 and 5097 Hz. For the sandwich case as
depicted in Table 2, the present solutions for linear vibrations are in good agreement with
those of three-dimensional "nite element solution using a 20-noded brick element.

To solve the non-linear eigenvalue problem, an iterative procedure is used. The iteration
starts from a corresponding initial mode shape obtained from linear analysis, with
amplitude scaled up by a factor. This gives the initial value denoted by d

i
. Based on this

initial mode shape, the non-linear sti!ness matrices are formed, and an eigenvalue and its
corresponding vector are evaluated. This eigenvector is then scaled up again and the
iteration continues until the frequency/damping factor and the eigenvector obtained from
the subsequent two iterations satisfy the required convergence criteria suggested by Bergan
and Clough [16] within a tolerance of 0)01%.

Since there are no results directly concerning the non-linear torsional vibration and
damping behaviour of sandwich beam with visoelastic core available in the literature,
numerical experiments are conducted for analyzing the cantilever sandwich beams by
considering di!erent values for the thickness ratio (h

1
/h

2
). The shear modulus G of the core

of the laminates is varied in such a way that one can see the behaviour of the beams made of
constrained layered damping arrangement to sandwich construction. Numerical results are
evaluated using eigenvalue formulation based on QR algorithm. The results concerning free
vibration and damping are presented in Tables 3}5 for di!erent thickness ratios of the
beam.

It is evident from these tables that, in general, the system loss factor ratio (g
NL

/g
L
; g

L
, g

NL
are the system loss factors obtained from linear and nonlinear analysis) decreases, but the



TABLE 3

Non-linear frequency and loss factor ratios of cantilever beam (h
1
/h

2
"1

7
)

h (rad) G-core (MPa)"2)5 25 250

b(m)"0)0075 0)015 0)03 0)015 0)015

u
nl
/u

l
g
nl
/g

l
u

nl
/u

l
g
nl
/g

l
u

nl
/u

l
g
nl
/g

l
u

nl
/u

l
g
nl
/g

l
u

nl
/u

l
g
nl
/g

l

0)20 1)0021 0)9958 1)0056 0)9889 1)0286 0)9461 1)0026 0)9949 1)0004 0)9991
0)40 1)0084 0)9835 1)0223 0)9575 1)1126 0)8178 1)0103 0)9799 1)0018 0)9966
0)60 1)0188 0)9640 1)0498 0)9103 1)2478 0)6730 1)0231 0)9562 1)0040 0)9923
0)80 1)0332 0)9383 1)0874 0)8530 1)4293 0)5451 1)0409 0)9253 1)0070 0)9865
1)00 1)0515 0)9078 1)1348 0)7910 1)6536 0)4421 1)0635 0)8891 1)0110 0)9790
1)25 1)0795 0)8651 1)2068 0)7130 1)9913 0)3447 1)0983 0)8389 1)0172 0)9677
1)50 1)1131 0)8195 1)2921 0)6389 2)3906 0)2737 1)1401 0)7862 1)0247 0)9543
1)75 1)1518 0)7727 1)3903 0)5711 * * 1)1885 0)7332 1)0336 0)9390
2)00 1)1955 0)7263 1)5008 0)5105 * * 1)2432 0)6817 1)0438 0)9222

u
l
(Hz) or g

l
245)81 0)0193 188)34 0)0620 137)58 0)1486 273)29 0)2891 659)75 0)4203

L
E

T
T

E
R

S
T

O
T

H
E

E
D

IT
O

R
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TABLE 4

Non-linear frequency and loss factor ratios of cantilever beam (h
1
/h

2
"1, b"0)015 m)

h (rad) G-core (MPa)"2)5 25 250

u
nl
/u

l
g
nl
/g

l
u

nl
/u

l
g
nl
/g

l
u

nl
/u

l
g
nl
/g

l

0)20 1)0006 0)9987 1)0006 0)9988 1)0004 0)9993
0)40 1)0025 0)9949 1)0024 0)9953 1)0015 0)9971
0)60 1)0057 0)9887 1)0053 0)9895 1)0033 0)9936
0)80 1)0102 0)9802 1)0095 0)9815 1)0058 0)9887
1)00 1)0158 0)9696 1)0148 0)9716 1)0090 0)9824
1)25 1)0246 0)9536 1)0230 0)9565 1)0141 0)9729
1)50 1)0352 0)9351 1)0329 0)9391 1)0202 0)9617
1)75 1)0476 0)9144 1)0445 0)9195 1)0274 0)9488
2)00 1)0618 0)8921 1)0577 0)8984 1)0357 0)9345

u
l
(Hz) or g

l
748)00 0)0040 774)22 0)0367 985)51 0)1959

TABLE 5

Non-linear frequency and loss factor ratios of cantilever beam (h
1
/h

2
"7, b"0)015 m)

h (rad) G-core (MPa)"2)5 25 250

u
nl
/u

l
g
nl
/g

l
u

nl
/u

l
g
nl
/g

l
u

nl
/u

l
g
nl
/g

l

0)20 1)0003 0)9994 1)0003 0)9994 1)0002 0)9996
0)40 1)0012 0)9976 1)0011 0)9977 1)0007 0)9986
0)60 1)0028 0)9945 1)0026 0)9949 1)0016 0)9968
0)80 1)0049 0)9903 1)0045 0)9910 1)0029 0)9943
1)00 1)0076 0)9850 1)0071 0)9861 1)0045 0)9912
1)25 1)0119 0)9769 1)0110 0)9785 1)0070 0)9863
1)50 1)0171 0)9672 1)0158 0)9695 1)0100 0)9804
1)75 1)0232 0)9561 1)0215 0)9591 1)0136 0)9736
2)00 1)0301 0)9437 1)0279 0)9476 1)0178 0)9659

u
l
(Hz) or g

l
1147)61 0)0045 1192)29 0)0395 1492)72 0)1524
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frequency ratio (u
NL

/u
L
) increases with an increase in the amplitude of torsional vibration

mode of the beam. This e!ect is more so with the increase in the width of the beam.
Furthermore, it can be seen that the rate of decrease in the damping ratio and the rate of
increase in the frequency ratio are less with the increase in the value of the core shear
modulus. This type of trend in the damping behaviour is because of the change in the shear
energy due to shear of the laminates, and it depends not only on the geometry but also on
the level of vibration amplitudes. It is also inferred from these tables that the increase in the
torsional frequency ratio is less when the core thickness is very less or of the order of face
thickness. A similar trend is seen for decrease in the damping ratio for a low value of core
thickness. In general, it can be opined that the e!ect of amplitudes is more on the frequency
and damping ratio when the core thickness is high. It is hoped that this study will be useful
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for the designers/engineers while optimizing the sandwich structures for the torsional
response under dynamic situations.
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